A Message from the Director

The Purdue Cancer Center is making a difference — in the lives of those in West Lafayette, in Indiana, in the country, in the world! As you will read in this annual report, our scientists are making leaps and bounds in cancer research. This means more precise treatments, fewer recurrences, and better outcomes for people living with cancer, thanks to the research being done here at the Purdue Cancer Center.

A new funding initiative at the Purdue Cancer Center is to put additional money and support into novel cancer research ideas. This proposal is called Strategic Asset Enhancement and will provide opportunities for our scientists to expand concepts that otherwise would be difficult to develop. We believe that by investing in these new ideas, our scientists will be able to develop new treatments that will lead to our goal of reducing the pain and suffering caused by this disease. If you would like to know more about this project, please contact our development office today.

Thank you for your support of the Purdue Cancer Center. You are making a difference.

Timothy L. Ratliff, PhD
DIRECTOR
Statistics

Purdue Cancer Center Faculty by College

<table>
<thead>
<tr>
<th>College</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Agriculture</td>
<td>10</td>
</tr>
<tr>
<td>College of Consumer and Family Sciences</td>
<td>2</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>2</td>
</tr>
<tr>
<td>School of Health Sciences</td>
<td>2</td>
</tr>
<tr>
<td>School of Pharmacy and Pharmaceutical Sciences</td>
<td>17</td>
</tr>
<tr>
<td>College of Science</td>
<td>29</td>
</tr>
<tr>
<td>School of Veterinary Medicine</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

Number of areas represented:
14 departments and 6 colleges

Number of articles published last year:
326
THE PURDUE CANCER CENTER, though located in West Lafayette, Indiana, serves the world. As a part of Purdue University, the center has been around since 1978 and is recognized by the National Cancer Institute (NCI) as a designated-basic science center. As a member of this elite group of U.S. cancer centers, we are one of only seven designated-basic centers in the nation.

Our researchers work at the basic scientific level, developing new technologies and devices that detect cancer at its earliest stages. By uncovering the secrets of cancer cells, we can understand how cancer develops and create new anti-cancer drugs. With additional research and funding, our capabilities are unlimited.

Cancer affects millions of people each year, taking a huge emotional and physical toll on nearly every family in the United States. Yet, while cancer is the second leading cause of health-related deaths in this country, death rates have fallen over the past few years. That’s primarily a result of better early detection techniques, but also because of more effective treatments. Purdue Cancer Center researchers have helped make both happen.

Cancer is a growing challenge to pets as well; in the United States today, there are more than 54 million pet dogs. Our researchers are studying the similarities between human and canine cancers and are working closely with veterinary oncologists at the Purdue University School of Veterinary Medicine. Through the successful treatment of canine cancers, oncologists are finding clues for treating human cancers as well.
The Purdue Cancer Center Challenge, a 5K run/walk to raise money for cancer research, was held April 12, 2008, on the West Lafayette campus. Nearly 1,200 participants helped raise more than $30,000.

The inaugural Purdue Cancer Center Challenge, a 5K run/walk to raise money for cancer research, was held April 12, 2008, on the West Lafayette campus. Nearly 1,200 participants helped raise more than $30,000.

The Purdue Cancer Center Challenge 5K run/walk, held this spring on Purdue’s campus, raised more than $30,000 for cancer research through entry fees and donations.

Community members Beth Saiki-Olsen and Paulette Moody co-chaired the event, which aimed to raise awareness and funding for the Purdue Cancer Center by attracting 1,000 participants. They exceeded that goal with more than 1,180 walkers, runners, and volunteers.

As part of the inaugural race, the center honored the student organization with the highest percentage of participating members. The Cuonzo Martin Challenge Award was named for former Purdue men’s basketball player and former assistant coach Cuonzo Martin, a cancer survivor who also was a member of the race planning committee. The Purdue women’s swimming team and men’s basketball team shared top honors this year for their efforts in volunteering, walking, and running. A plaque hanging in the Purdue Cancer Center bears the names of these dedicated teams. Each team also received a rotating plaque for display throughout the year.

Join us for next year’s Challenge on April 18, 2009
The National Cancer Institute (NCI) is a component of the National Institutes of Health, one of eight agencies that comprise the Public Health Service in the Department of Health and Human Services. Established under the National Cancer Act of 1937, the NCI is the federal government’s principal agency for cancer research and training. The National Cancer Act of 1971 created the National Cancer Program, broadening NCI’s scope and responsibilities.

Today, the National Cancer Program conducts and supports research, training, health information dissemination, and other programs concerning the cause, diagnosis, prevention, and treatment of cancer, along with the continuing care of cancer survivors and their families.

Through a competitive federal grant program, the NCI recognizes only the best cancer institutes in the United States as official NCI cancer centers. Currently there are 63 NCI-designated cancer centers nationwide, including the Purdue Cancer Center. The PCC also has the added distinction of being one of only seven NCI-designated basic research cancer centers in the country. The Purdue Cancer Center has received continuous support from the NCI since they were awarded their first competitive grant in 1978.
New Gifts Bring New Opportunities

SEVERAL GIFTS to the Purdue Cancer Center last year have brought new opportunities, not only through recognition in research papers and the media, but also through a new lecture series, a recently endowed director’s chair, and a newly endowed chair in clinical cancer research.

Donations to the Purdue Cancer Center increased substantially, with net production up from 2007 to 2008. Along with many other supporters, the center received leadership gifts from Dick and Jane Miller, Pete and Sally Kay, Linda Rohrman, Chuck and Betty Jordan, Nick and Paulette Zimmer, James and Diann Robbers, West Lafayette Sagamore Lions Club, Michael Pounder, Irene Roberts, and Marcia Brown. Here are highlights of three of these gifts:

Endowed Chair in Clinical Cancer Research
Purdue alumnus Peter Kay and his wife, Sally, have been longtime supporters of the Purdue Cancer Center. Their gift of $2 million will endow a chair in clinical cancer research, a first of its kind. The gift will benefit the Purdue Cancer Center as well as the Oncological Sciences Center, an arm of PCC located in Purdue’s Discovery Park.

West Lafayette Sagamore Lions Club Annual Symposium
The West Lafayette Sagamore Lions Club has been supporting the center’s research efforts since 1990. To honor their membership and fulfill their dream of fighting cancer, the club has endowed $25,000 for the West Lafayette Sagamore Lions Club Annual Symposium on Cancer Research. The symposium will bring together cancer scientists from Purdue University, Indiana University, the University of Notre Dame, and other universities and cancer centers to collaborate on new cancer research and create awareness of the progress being made to end suffering and death caused by the disease.

Robert Wallace Miller Director’s Chair
Former Indiana Senator V. Richard “Dick” Miller and his wife, Jane, provided $1.5 million to fund the Robert Wallace Miller Director’s Chair. The endowment was made in memory of their son, Robbie, who died in 1976 from a rare form of cancer called rhabdomyosarcoma when he was only 11 years old.

The Robert Wallace Miller Chair will allow Purdue Cancer Center Director Timothy Ratliff to use the funds as needed to support the center’s research. The Millers said they were proud to give this support to the Purdue Cancer Center — a place where researchers with a variety of specialties come together to design new tools that aid in the diagnosis of cancer, understand and uncover cancer secrets, and design new cancer drugs that will one day help people everywhere.

Sally and Peter Kay in Naples, Florida, for the annual Mollenkopf Weekend hosted by President’s Council.
Oncological Sciences Center

SINCE ITS OPENING IN JULY 2005, Discovery Park’s Oncological Sciences Center (OSC) has made great strides in its efforts to integrate the entire spectrum of cancer, from prevention to care delivery. Along with integrating life sciences, engineering, and chemical sciences, researchers also have been collaborating with liberal arts professionals to discuss the social complexities of the disease.

For instance, OSC and the Purdue University Department of English jointly sponsored the first Cancer Culture and Community Colloquium last November. The event featured several poets and writers, including Terry Tempest Williams, author of *Refuge: An Unnatural History of Family and Place*, which chronicles a family’s battle with cancer.

“We were excited to launch this unique dialogue as revealed through literature and the performing arts,” says Marietta Harrison, OSC director and associate director of the Purdue Cancer Center. “The Cancer Culture and Community program provides a venue where nationally renowned writers and artists who have a keen interest in cancer can intersect with Purdue students, faculty, and members of our local community.”

Another OSC program launched last year focuses more on the translation of Purdue technology to cancer patients. Through meetings of the new Cancer Research Clinical Partnership, professors and physicians come together several times each semester to discuss how cancer is diagnosed and treated, and how Purdue research can assist in solving clinical problems.

“Our goal is to make sure the technology that is being developed at Purdue is on the right track in making a difference in patients’ lives,” says Julie Nagel, OSC managing director. “We put researchers in contact with physicians to plan future research projects together.”

These collaborations already have resulted in local physician participation in clinical trials with Purdue Research Park company Endocyte. It’s the first time a human trial of a drug that is based on Purdue research has taken place right here in Tippecanoe County.

The gatherings also have increased understanding between clinicians and researchers, a key goal of OSC. “It’s helped guide research up front, where professors can design studies that are relevant to the needs of clinicians,” says Nagel. “It’s also helped physicians realize the power of what Purdue researchers are developing.”

Author Terry Tempest Williams talks about her book that chronicles a family’s battle with cancer.
Medical Philanthropy Honors PCC Researchers

THE HOWARD HUGHES MEDICAL INSTITUTE (HHMI), one of the nation’s largest medical philanthropies, honored two Purdue Cancer Center researchers in the past year.

In June 2008, Professor Jue Chen became one of HHMI’s new investigators. She was one of 56 chosen this year out of more than 1,000 applicants for the prestigious award.

HHMI currently has about 300 investigators, selected for their potential to make significant contributions to science. Investigators are employed by the institute but remain in their home institutions, leading a research group of students, technicians, and associates.

Chen’s appointment will help cover her salary and laboratory expenses for an initial period of five years.

“The idea is to provide support for people doing high-risk, high-impact research,” says Chen, whose research centers on ABC transporters, a class of proteins often implicated in cancer-drug resistance. “I’m hoping to help us understand the reason we have drug resistance, and hopefully that knowledge will help people design new chemotherapy drugs that will work on ABC transporters.”

HHMI also has awarded Professor J. Paul Robinson with a five-year, $749,755 grant to provide virtual science field trips to middle school students. The funding is part of a $22.5 million initiative by HHMI to promote collaboration between research institutions and educational programs that stimulate an interest in science among young students. The program brings together faculty, staff, and students from the School of Veterinary Medicine, the colleges of Agriculture, Science, and Engineering, and the Discovery Learning Center. Purdue was the only veterinary school among the 31 chosen institutions.

Robinson’s program is aimed at boosting Hoosier middle school students’ knowledge of science. Without leaving their classrooms, students will be able to view presentations by Purdue professors in such areas as veterinary medicine, biology, and agriculture. The modules will help enhance students’ understanding of the relationship between science and society, the career opportunities available in science, and the academic pathways that students need to take in order to become scientists.

“Electronic field trips are similar to traditional field trips,” Robinson says. “They require advance preparation and a certain amount of schedule modification, but with the advantage of saving transportation costs and travel time. This can be a significant addition to middle school science education programs, especially for small, rural school communities that are often overlooked when it comes to science enrichment opportunities.”
It’s common knowledge today that early detection and treatment offers the best prognosis to people with cancer. But to develop more effective diagnostic tools for earlier intervention, scientists are increasingly reliant on their understanding of how cells mutate and become malignant. Now a novel technique developed by two Purdue Cancer Center researchers may provide some new answers.

Early in 2008, Professors Chang Lu and Robert Geahlen announced that they now can visualize large numbers of cells individually as proteins move within them. The movements signal cellular changes, including oncogenesis, or tumor development.

The team’s method actually combines two existing technologies. One is electroporation, which prepares cells for protein localization analysis. The other is flow cytometry, which can rapidly examine individual cells for the protein.

When used separately, the individual techniques either provide very slow results on just a few cells or simply average the movements of a protein within many cells without precision. The combined new method, which the team is calling electroporative flow cytometry, allows them to read a protein’s location accurately and quickly.

Protein movements are important to study because they activate tumor cells, causing them to develop and proliferate. Understanding the movements may help clinicians in the future in diagnosing and staging cancers.

For this particular study, the researchers focused on a protein kinase. In future examinations, they will study other proteins while also working to increase the speed of their technique. If further research bears out, the technique could be used in a clinical setting within five to 10 years.

Research in the Cell Growth and Differentiation signature area strives to provide basic discoveries in cancer cell biology. The program unites investigators with expertise in cell biology, genetics, biochemistry, molecular biology, and developmental biology who are using these approaches to identify molecules and pathways that function to control the growth of cells.

“One of the strengths of the Purdue Cancer Center is the access our scientists have to the cutting-edge technologies that are being developed within the various engineering departments on campus,” says Elizabeth Taparowsky, who leads the signature area. “For members of the Cell Growth and Differentiation program, this provides unique opportunities for discovery that are not available at other institutions in the United States.”
Professors Chang Lu and Robert Geahlen are pioneering a technique, electroporative flow cytometry, which allows them to read a protein’s location accurately and quickly. Protein movements are important to study because they activate tumor cells, causing them to develop and proliferate.
Blasts are typically associated with large explosions, but in the world of cancer care, they are taking place microscopically. As researchers increasingly focus on the molecular basis of tumor development, they’re aiming for tiny changes with potentially big results.

For instance, in the laboratories of Professors Ji-Xin Cheng and Alexander Wei, ultrafast laser pulses are being employed to detect tumor cells labeled with gold nanorods, which can then be triggered to blast miniature holes on the cell surface. These outbursts set off a chain of biochemical reactions that cause the tumor cell to self-destruct.

By attaching the gold nanorods to folate, which tumor cells crave, researchers can avoid healthy cells that are typically damaged during traditional chemotherapy treatments. About 200 times tinier than a red blood cell, the gold rods escape initial detection by the immune system, allowing them to stay in the bloodstream long enough to find and bind to the cancer cells.

Nanomedicine also holds the promise for another of Cheng’s studies, this one with Professor Kinam Park. By coating tiny drug-delivery spheres with different combinations of polymers, they are determining how to ensure the spheres remain intact until they reach tumor cells, where they can then release anti-cancer medications.

In past research, similar spheres have broken down before they released drugs into targeted cells. By applying dyes to different coatings, the researchers now can visualize where and when some of these coatings disintegrate. Ultimately, cross-linking different polymer strands may protect the spheres until they reach their destination.

The Drug Delivery and Molecular Sensing signature area focuses on cancer imaging, nanotechnology, genomics, proteomics, and biomarker discovery. Nanomedicine in particular could dramatically alter cancer care by allowing physicians to target and repair cancer cells at the molecular level.

Says signature area head, Donald Bergstrom, Walther Professor of Medicinal Chemistry, “Both projects illustrate the synergistic capabilities of Purdue researchers to push forward a new generation of ‘smart’ cancer therapies.”
Nanomedicine plays a big role in the research of Professors Ji-Xin Cheng, Alexander Wei, and Kinam Park. Their research could impact cancer care by allowing physicians to target and repair cancer cells at the molecular level.
Many cancer cells resist extinction by pumping drugs out through tiny gateways that allow materials to move in and out of cells. Now, a group of Purdue Cancer Center researchers has captured an image of a critical step in that molecular process.

The team, led by Professors Jue Chen and Amy Davidson, used X-ray crystallography last year to obtain a snapshot of an ABC transporter protein in a state that represents a midpoint in the transport of molecules through a cellular membrane. “ABC transporter proteins contain a miniature gate that can open and close to do work for the cell, including pumping out toxic molecules or allowing nutrients into the cell,” explains Cynthia V. Stauffacher, director of the Chemical and Structural Biology program.

One of the largest protein groups, ABC proteins serve many important biological functions. But the same mechanisms that keep us healthy also can force anti-tumor drugs out of cancer cells before they have a chance to work. By understanding each step of this process, researchers could design more effective treatments for certain kinds of cancer in which ABC proteins are overabundant.

Another key discovery in chemical and structural biology studies at the Purdue Cancer Center was made last year by Professor Andy Tao. He’s been working with complex nanomolecules called dendrimers, which can easily enter living cells.

Tao and his colleagues have developed a dendrimer that glows when it comes into contact with human-disease proteins. Last year, they tested their development on snake venom, which contains proteins similar to the ones in human blood.

While the process is enormously complex, the goal is simple: to create a more efficient way of diagnosing diseases, including cancer, within living cells and human beings. Many diagnostic methods rely on dead blood or tissue cells whose molecular processes are disrupted when samples are collected. Dendrimers, however, can enter living cell walls and label specific proteins without significantly disrupting them.

Basic research like this in the Chemical and Structural Biology signature area focuses on chemical, biochemical, and structural mechanisms involved in cancer. Groundbreaking discoveries in this area allow other researchers to develop therapies, delivery methods, and imaging techniques for cancer diagnosis and treatment.
Research being conducted by Andy Tao, Jue Chen, and Amy Davidson is facilitating the development of therapies, delivery methods, and imaging techniques for cancer diagnosis and treatment.
Man’s best friend may provide more than companionship in the future. These four-legged creatures could hold the key to understanding pre-malignant mammary lesions that may develop into breast cancer.

Last year, Professor Sulma Mohammed and several of her colleagues discovered similarities between the lesions in both canines and humans. Because the lesions appear spontaneously in dogs and because dogs are exposed to the same environmental risks as humans, that makes them an ideal model for determining which lesions will develop into cancer and which ones won’t.

Since mammography has become the gold standard in screening for breast cancer, many more women are diagnosed with abnormal cell growth than ever before. The lesions are considered risk factors for cancer, so their discovery drives preventive care.

If the lesions are estrogen-receptor (ER) positive, the patient can undergo hormonal therapy. When women have high-risk or ER-negative lesions, however, physicians have no available treatments. By studying tissue samples of dogs, Mohammed can see if malignancies develop and also determine which medical interventions are most likely to prevent their occurrence.

Because dogs have a shorter life span than humans, it only takes a few years, not decades, for lesions and tumors to develop, which will give the researchers relatively quick answers to their questions. And naturally, their findings could benefit dogs as well as humans. Already, dogs undergo treatment for mammary cancer at specialty veterinary clinics like Purdue’s.

The Drug Design and Discovery signature area focuses on the development of small organic molecules as cancer chemotherapeutic agents. Researchers within this area use various approaches — chemical, biochemical, cellular, and animal methods — to synthesize new molecules and to test existing ones.

Animal trials like Mohammed’s complement the work of researchers like Professor Mark Cushman, whose class of potential cytotoxic compounds is currently undergoing human clinical trials under the auspices of the National Cancer Institute.

Says Richard Gibbs, who leads this signature area, “Many in the field are now realizing that the study of cancer in pet dogs provides a very valuable complement to other animal and human cancer studies. The Purdue Cancer Center is in a unique position to carry out research in this area, such as the study from Dr. Mohammed’s laboratory.”
By studying tissue samples of lesions in dogs, Professor Sulma Mohammed can see if malignancies develop and determine which medical interventions are most likely to prevent their occurrence. Her research is aided by her team's discovery last year of similarities between lesions in humans and dogs.
A biologist in the Purdue Cancer Center, Konieczny is searching for markers that physicians could use to diagnose pancreatic cancer long before late-stage symptoms like weight loss and abdominal pain appear.

“Our goal is to understand the very beginning events that initiate changes in cells that eventually lead to pancreatic cancer,” says Konieczny, whose research is funded in part by the National Cancer Institute. “Surgeons and oncologists have a pretty good handle on the late stages of the disease, but at this point, we as scientists have not developed very good therapeutic strategies to help the patient. We are trying to find cellular changes that occur much earlier, with the hope that we can develop a diagnostic tool that allows us to detect those changes long before the patient actually develops a tumor.”

Konieczny is focusing his research on transcription factors, a class of proteins that control gene expression patterns. Several years ago, he and his colleagues discovered a new transcription factor that is highly expressed in the pancreas. Deletion of this transcription factor accelerates the earliest stages of pancreatic cancer, suggesting that controlling transcription networks in cancer cells may be the key to developing better therapeutic approaches to combat the disease. Using mice as a model system, the Konieczny lab induces changes within individual cells and then carefully watches for the initial stages of tumor development.

“Working at different points along a continuum, scientists can piece together the progression of the disease,” Konieczny explains. “For our interest, we want to understand the earliest events of that progression.”

Konieczny emphasizes that his laboratory is one of several hundred around the world conducting this kind of research. “Many are working day and night to find biological markers to early stages of cancer,” he says. “Like a lot of research problems, it will take discoveries garnered from our lab and others at the Purdue Cancer Center, as well as from hundreds of other labs to put the entire story together.”
Biologist Stephen Konieczny studies the cellular changes that occur in the early stages of pancreatic cancer. He hopes his research will lead to the development of a diagnostic tool that can detect these cellular changes, prompting early cancer treatment and higher survival rates.
This past year was one for the record books, and it is in thanks to our generous supporters. Thank you! Our researchers have more funding and are reaching incredible new pinnacles in cancer research. We are excited for what the future holds and look forward to uncovering even more cancer secrets in the upcoming year. Thank you for all that you have done to help the Purdue Cancer Center make headway in cancer research.

Due to space restrictions, we are unable to list every gift to the center. Below are the donors who contributed gifts in excess of $100 for the 2007–08 fiscal year.

$100,000,000 and above
Pete and Sally Kay
Dick and Jane Miller

$100,000–$999,999
Chuck and Betty Jordan
Jim and Dorothy Morré
Linda Rohrman

$10,000–$99,999
Ed and Dottie Elliott
John Ely
Bill and Mary Ellen Lovell
Dale and Sonya Margerum
Ed and Ermanna Natke
Michael and Sadie Pounder
Jim and Diann Robbers
Paul and Jo Ann Ward
Nick and Paulette (deceased) Zimmer

$5,000–$9,999
Arlen and Marcia Brown
Bob Holloway
John and Linda Kelver
Kathy Lane (deceased)
Irene Roberts

$1,000–$4,999
Bill Antonis
Wayne and Patricia Barden
Bill and Jean Beard
Katie Behr
Carl and Alice Bimel
Bob and Mary Ellen Blohm
Horace and Linda Buckner
Kim Canine
Edward and Carol Chait
William Claxton
Stephen Cobb
Helen Crane
George and Pam Faerber
Jim and Sally Friend
Art and Marylin Hansen
Margaret Heinold

Dick and Jane Miller provided $1.5 million to fund the Robert Wallace Miller Director’s Chair. The endowment was made in memory of their son, Robbie, who died in 1976 at the age of 11 from a rare form of cancer.
<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
</table>
Charlotte Dexter
Patricia Dice
Joe and Dottie DiGirolamo
Ann DiGregorio
Doris Dill
Rolando Dirindin
Sandra Donahue
Joan Dorman
Todd Dorn
Al and Tonya Douglass
Ruth Dowden
Rich and Pam Doyle
Thomas Doyle
Lynn Dunbar
Rod and Phyllis Dunham
Eliza Dysert
Sally Ebershoff
Mildred Eby
Doyle Egly
Marcella Egly
Bill and Nancy Elliott
Gini Elliott
Joseph and Johanna Elliott
Lester Elliott
C. Robert Ellis
Stephen Elmerick
Bob and Ellen Elson
Donna Emerson
Jim and Marian Emmett
Sue Esslinger
Jil Evans
Ruth Evans
Dan and Laura Everage
Rich Faga
Joe and Teresa Fahrbach
Jim and Jenny Falloon
Elissa Feldmeyer
Mary Feller
Walter and Nancy Ferdon
James Ferguson
Ken and Jacki Field
Art Finco
Jeff Finke
Dorothy Finstick
William and Gisela Fitzgerald
Patrick and Susanne Fletcher
Mike and Marsha Flora
Mary Flueckiger
Lynn Folkers
Thomas Folkers
Andrew Foust
James Fowler
Linda Fox
Ralph and Joann Fox
Robert and Beryl Fox
Lori Frazee
William Fredenburg
Sally Freel
Cecil Frey
Otto and Muriel Fritz
Charles and Helen Fry
Charles Furnish
Bob Gable
Rosalyn Gale
Kathleen Gallagher
Pat and Beth Gallagher
John Garriott
Geoffrey Gauthier
Robert Geahlen and
Marietta Harrison
Rick Gelzleichter
Nola Gentry and
Ned Derhammer
Bob and Marilyn George
Doris Gerard
Gene and Bonnie Geyer
Jim and Jean Geyer
Barb Gibson
Barry and Jody Gibson
Max Gibson
Raymond Giles
Michael and Penny Glotzbach
Norma Golden
Milan and Patricia Gorby
David and Kathy Gortat
Alice Gosnell
Barbara Gotham
Barry and Paula Graden
Pat Gray
Thelma Greathouse
Lynn and Susan Grider
G. W. Griffin
Len and Elizabeth Griffiths
Bill and Roberta Griggs
Jack and Madelyn Grigsby
Wilma Grimm
Darrell Grisamer
M. J. Groenert
Ralph and Judy Grose
Donald Haase
Dale and Wanda Habenicht
Marilyn Haberle
Judith Hack
Becky Haddad
Robert and Christina Hagan
Pam Hall
Dave and Karen Haller
E. W. and Doris Halwes
Anella Hamilton
Dan and Cynthia Hanenkraut
Franklin Hankins
Richard and Marcile Hanna
John and Vicki Hardin
Donald Hargadon
Dick and Barbra Harley
William Harms
David Harris
William and Sue Harris
Joe and Violet Harrod
Larry and Judy Hart
Keith and Deb Hartman
Sharon Hartman
James Harvey
Larry and Susan Harvey
Dale and Nancy Hawkins
Dick Haworth
Philip Hayes
William Heath and
Miriam Epple-Heath
William Hebbeler
Mildred Hedden
Edward Heidenreich
Keith Heifner
Ron and Sandy Heilman
Robert and LuAnn Heitert
Richard Hess
Bruce Hetrick
Dave and Bonnie Hetrick
Tony Hewlett
Swiftie Hicks
Donna and Richard Higdon
Robert Hillery
Margery Hindmarch
John and Betty Hine
Lynnette Walk Hinkle
Lynn and Sue Hiser
Earl Hofert
Helen Hoffer
Marilyn Hoffman
Mike and Cynthia Hoffman
Pauline Hoffman
Donald Hofmann
David and Diane Hogsett
Mark and Tammi Hohulin
Betty Hollis
Everett and Melba Holmgren
Delores Holtman
Bonnie Hoover
Abner Horrell
Richard Horton
Henry and Lynda Hosek
Jama Hottenstein
Phillip Howard
Tsung-Huang Hsieh
Oscar Hufnagel
Steve Huggins
Michael and Wilma Hughes
Sandy Hughes
Glen and Jeanette Hulbert
Michael and Judy Humnicky
Ron and Sue Humphrey
Michael and Phyllis Hunt
Dick and Virginia Hurley
Shirley Irvin
Argyle Jackson
Jacob J. Jacob
Orval and Carol Jacobsen
Rebecca Jacquay
Bob and Ruth Jarrett
Lindell and Phyllis Jarrett
Becky Johnson
Michael Johnson
Virginia Johnston
James Jordan
Foundations and Corporate Donors

ADM Grain
Alcoa Foundation
American Cancer Society Inc.
Assurant Health Foundation
AT&T Foundation
BAE Systems
Belleville School District 118
Bioanalytical Systems Inc.
Black Blanket Farms
Board of Education
Toms River School
BP Foundation Inc.
Brettnacher Farms
Bridgestone/Firestone
Trust Fund
Bristol-Myers Squibb
Foundation Inc.
Callison
Care Group LLC
Carroll County Cancer Association
Ceramic Dreams
Chevron Corp.
Corning Inc. Foundation
Custom Dosing Pharmacy
Davidson & Associates Inc.
Dawald Farms
De Groote Rentals
Devonshire 5th Civic Association Inc.
Dow Corning Corp.
Duke Energy Foundation
El Paso Corporate Foundation
El Paso Natural Gas Foundation
Eli Lilly & Company Foundation Inc.
Executive Enterprises Inc.
Exelon
ExxonMobil Foundation
Fabrion of North Central Indiana
Faerber’s Bee Window Inc.
Federated Department Stores Foundation
GE Foundation
GlaxoSmithKline Foundation
Grunsfeld Shafer Architects LLC
Hachette Book Group USA
Harlingen Veterinary Clinic
Harvey and Donna Morré Foundation
Heilman Agencies Inc.
Henderson Farm Service
Hoffer Foundation
Houston Drug & Hallmark Shop
IBM International Foundation
Indiana Elks Charities Inc.
Indiana Humanities Council
Indiana Steel & Engineering Corp.
Johnson & Johnson
Kraft Foods
Lexmark International Inc.
Lindell Jarrett Farms Inc.
Lindenman Farm
Lockheed Martin
Matching Gift Program
Lynn Feller Rentals
Merrill Lynch & Company Foundation Inc.

The West Lafayette Sagamore Lions Club endowed $25,000 for the West Lafayette Sagamore Lions Club Annual Symposium on Cancer Research. At the gift presentation are Eldon Hood, Lions Club member; Frank Renfroe, Lions Club president; Tim Ratliff, Purdue Cancer Center director; and Bill Lovell, Lions Club member.
The following individuals had donations given In Memory Of them:

- Mr. Michael H. Adams
- Mr. Robert Aldag Jr.
- Mr. Ross L. Anderson
- Mrs. Beverly A. Baldwin
- Mrs. Nancy A. Bassett
- Mr. William C. Bellenger
- Mr. Robert Berfanger
- Mr. Forrest Berrisford
- Mr. John G. Blower
- Mr. Theodore B. Boots
- Mrs. Lonnelle Border
- Dr. William F. Bousquet
- Dr. Ralph Bray
- Mrs. Elizabeth J. Brown
- Mrs. Rose M. Burch
- Dr. Walter E. Buting
- Mr. Lawrence L. Canine
- Mr. Charles L. Cassida
- Mr. Gene S. Conner
- Mr. Charles H. Cooper
- Mr. Christopher M. Crawford
- Ms. Elizabeth N. Davis
- Mr. William R. Donahue
- Mr. Lee N. Dreiman
- Mr. Edward Elliott
- Ms. Amy L. Evans
- Mrs. Carolyn A. Flaningham
- Mrs. Ethel L. Fleischhauer
- Mr. Bradley E. Foster
- Dr. Mary E. Fuqua
- Ms. Loraine K. Geyer
- Mrs. Joyce H. Goodner
- Mrs. Debra L. Griffith
- Dr. Joe E. Haberle
- Mr. Bruce A. Harmon
- Dr. Miriam S. Hasson
- Mr. Alvin A. Haist
- Mrs. Martha M. Hine
- Mr. Michael L. Holder
- Mrs. Helen D. Howard
- Mrs. Virginia A. Humnicky
- Mrs. Joyce Jordan
- Mrs. Claire Kalesia
- Dr. Robert B. Kane

The following individuals had donations given In Honor Of them:

- Mr. Donald C. Kirk
- Mr. Alexander J. Kruggel
- Mr. Robert Kurrus
- Mr. Gerald L. Lawlis
- Mrs Karen Sarengach Lebryk
- Mr. John A. Lindeman
- Ms. Rae W. Little
- Mrs. Dana R. Mason
- Mrs. Lonnelle Border
- Dr. Donald F. Rasp
- Dr. David F. Rasp
- Mrs. Ann E. Reiling
- Mrs. Virginia Fields Schrag
- Dr. John F. Senft
- Mr. E. Wesley Settle Jr.
- Mrs. Marian E. Isham Shafer
- Mr. Brian C. Shaffer
- Mr. Edward G. Sheets
- Mr. Paul E. Shireman
- Mr. C. Benjamin Southard
- MA. Lloyd Stern Jr.
- Mrs. Karen Page Steybe
- Mr. Edward T. Sullivan
- Ms. Julie A. Swengel
- Mr. B. Dale Tague
- Mrs. Sharon Talbot
- Mrs. Carolyn R. Teibel
- Mr. Blake W. Touloukian
- Dr. James R. Tozer
- Mr. George L. Vonnegut
- Ms. Ginger S. Ward
- Dr. John Ward
- Mr. Walter E. Wirth
- Mrs. Paulette F. Zimmer

- Mrs. Nancy L. Muench
- Ms. Janet L. Ormiston
- Ms. Leela L. Paris
- Mrs. Meri E. Preuss
- Ms. Shawn-Kristin Reynolds
- Ms. Beth A. Saiki-Olsen
- Ms. Linda L. Staley
- Dr. Sara C. Strickler
- Mr. Blake W. Touloukian
- Ms. Gina A. Weilbaker
Purdue Cancer Center Administration

Purdue Cancer Center Administration
Timothy Ratliff, Director
Marietta Harrison, Associate Director
Timothy Bobillo, Director of Development
Lanie Foster, Business Office Clerk
Andrea Gregory-Kreps, Operations Manager
Betty Leak, Assistant
Catherine Reedy, Business Manager
Elizabeth Steurer, Director of Donor Relations

Executive Committee
Donald Bergstrom, PhD
Program Leader, Drug Delivery and Molecular Sensing
Richard Gibbs, PhD
Program Leader, Drug Design and Discovery
Marietta Harrison, PhD
Associate Director, Purdue Cancer Center
Director, Oncological Sciences Center
Deborah Knapp, DVM

Timothy Ratliff, PhD, Chair
Director, Purdue Cancer Center
Elizabeth Taparowsky, PhD
Program Leader, Cell Growth and Differentiation
Cynthia Stauffacher, PhD
Program Leader, Chemical and Structural Biology

Director’s Advisory Board
Terry Bowen, Indianapolis, IN
Ed Chait, West Lafayette, IN
Rebecca Cutchin, Lafayette, IN
Kitty Decker, Lafayette, IN
David Hetrick, Zionsville, IN
Claudia Kruggel, West Lafayette, IN
Paulette Moody, West Lafayette, IN
John Penta, Yorba Linda, CA
Linda Rohrman, Lafayette, IN
Beth Saiki-Olsen, West Lafayette, IN

Impact future generations with a planned gift …

• Bequest/Will Provision
Gifts made in your will are deductible as a charitable contribution for federal estate tax purposes. Bequests can be designated as unrestricted or for a specific purpose.

• Charitable Gift Annuity
• Revocable Living Trust
• Charitable Remainder Annuity Trust
• Charitable Remainder Unitrust
• Pooled Income Fund
• Life Insurance
• Retirement Plan Assets

How can you make a difference?
For information on specific planned giving options, contact the Planned Giving Office at plangift@purdue.edu or (800) 677-8780.
PURDUE CANCER CENTER

Hansen Life Sciences Research Building
201 S. University Street
West Lafayette, IN 47907-2064

Phone: (765) 494-9129
Fax: (765) 494-9193
E-mail: pccinfo@purdue.edu

www.cancer.purdue.edu